/*
 * Klang – a node+text-based synthesizer library
 *
 * This file is part of the *wellen* library (https://github.com/dennisppaul/wellen).
 * Copyright (c) 2022 Dennis P Paul.
 *
 * This library is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 3.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

/**
 *       [ NODE_VCO_FUNC       ]
 *       +---------------------+
 *       |                     |
 * IN00--| FREQ         SIGNAL |--OUT00
 * IN01--| AMP                 |
 *       |                     |
 *       +---------------------+
 *
 *       @description(
 *       )
 */

#ifndef NodeVCOFunction_hpp
#define NodeVCOFunction_hpp

#include "KlangMath.hpp"

namespace klang {
    class NodeVCOFunction : public Node {
    public:
        static const CHANNEL_ID CH_IN_FREQ = 0;
        static const CHANNEL_ID CH_IN_AMP  = 1;
        static const CHANNEL_ID NUM_CH_IN  = 2;
        static const CHANNEL_ID NUM_CH_OUT = 1;

        enum WAVEFORM {
            SINE = 0,
            TRIANGLE,
            SAWTOOTH,
            SQUARE
            // @TODO("add `EXPONENT`")
        };

        NodeVCOFunction() {
            set_frequency(OSC_DEFAULT_FREQUENCY);
            set_amplitude(OSC_DEFAULT_AMPLITUDE);
        }

        void set_waveform(WAVEFORM pWaveform) { mWaveform = pWaveform; }

        bool connect(Connection* pConnection, CHANNEL_ID pInChannel) {
            if (pInChannel == CH_IN_FREQ) {
                mConnection_CH_IN_FREQ = pConnection;
                return true;
            }
            if (pInChannel == CH_IN_AMP) {
                mConnection_CH_IN_AMP = pConnection;
                return true;
            }
            return false;
        }

        bool disconnect(CHANNEL_ID pInChannel) {
            if (pInChannel == CH_IN_FREQ) {
                mConnection_CH_IN_FREQ = nullptr;
                return true;
            }
            if (pInChannel == CH_IN_AMP) {
                mConnection_CH_IN_AMP = nullptr;
                return true;
            }
            return false;
        }

        void set_command(const KLANG_CMD_TYPE pCommand, KLANG_CMD_TYPE* pPayLoad) {
            switch (pCommand) {
                case KLANG_SET_FREQUENCY_F32:
                    set_frequency(KlangMath::FLOAT_32(pPayLoad));
                    break;
                case KLANG_SET_AMPLITUDE_F32:
                    set_amplitude(KlangMath::FLOAT_32(pPayLoad));
                    break;
                case KLANG_SET_OFFSET_F32:
                    set_offset(KlangMath::FLOAT_32(pPayLoad));
                    break;
                case KLANG_SET_WAVEFORM_I8:
                    set_waveform(static_cast<WAVEFORM>(pPayLoad[0]));
                    break;
            }
        }

        void set_amplitude(float pAmplitude) {
            mAmplitude = pAmplitude;
        }

        const float get_amplitude() {
            return mAmplitude;
        }

        void set_offset(float pOffset) {
            mOffset = pOffset;
        }

        const float get_offset() {
            return mOffset;
        }

        void set_frequency(float pFrequency) {
            if (mFrequency != pFrequency) {
                mFrequency = pFrequency;
                mStepSize  = mFrequency * TWO_PI / KLANG_AUDIO_RATE_UINT16;
            }
        }

        const float get_frequency() { return mFrequency; }

        void update(CHANNEL_ID pChannel, float* pAudioBlock) {
            if (is_not_updated()) {
                mBlock_FREQ = AudioBlockPool::NO_ID;
                if (mConnection_CH_IN_FREQ != nullptr) {
                    mBlock_FREQ = AudioBlockPool::instance().request();
                    mConnection_CH_IN_FREQ->update(mBlock_FREQ);
                }
                mBlock_AMP = AudioBlockPool::NO_ID;
                if (mConnection_CH_IN_AMP != nullptr) {
                    mBlock_AMP = AudioBlockPool::instance().request();
                    mConnection_CH_IN_AMP->update(mBlock_AMP);
                }
                flag_updated();
            }
            if (pChannel == CH_OUT_SIGNAL) {
                float* mBlockData_FREQ = nullptr;
                if (mBlock_FREQ != AudioBlockPool::NO_ID) {
                    mBlockData_FREQ = AudioBlockPool::instance().data(mBlock_FREQ);
                }
                float* mBlockData_AMP = nullptr;
                if (mBlock_AMP != AudioBlockPool::NO_ID) {
                    mBlockData_AMP = AudioBlockPool::instance().data(mBlock_AMP);
                }

                for (uint16_t i = 0; i < KLANG_SAMPLES_PER_AUDIO_BLOCK; i++) {
                    if (mBlock_FREQ != AudioBlockPool::NO_ID) {
                        set_frequency(mBlockData_FREQ[i]);
                    }
                    switch (mWaveform) {
                            // @TODO("align phase offset with `NodeVCOWavetable`")
                        case SINE:
                            process_sine(i, pAudioBlock);
                            break;
                        case TRIANGLE:
                            process_triangle(i, pAudioBlock);
                            break;
                        case SAWTOOTH:
                            process_sawtooth(i, pAudioBlock);
                            break;
                        case SQUARE:
                            process_square(i, pAudioBlock);
                            break;
                    }
                    pAudioBlock[i] *= (mBlock_AMP != AudioBlockPool::NO_ID) ? mBlockData_AMP[i] : mAmplitude;
                    pAudioBlock[i] += mOffset;
                }
            }

            /* release blocks */
            if (mBlock_AMP != AudioBlockPool::NO_ID) {
                AudioBlockPool::instance().release(mBlock_AMP);
            }

            if (mBlock_FREQ != AudioBlockPool::NO_ID) {
                AudioBlockPool::instance().release(mBlock_FREQ);
            }
        }

    private:
        float mFrequency = 0.0;
        float       mStepSize  = 0.0;
        double      mPhase     = 0.0;  // @NOTE("single precision introduces drift")
        float mAmplitude = SIGNAL_MAX;
        float mOffset    = 0.0;
        WAVEFORM    mWaveform  = WAVEFORM::SINE;

        AUDIO_BLOCK_ID mBlock_FREQ            = AudioBlockPool::NO_ID;
        AUDIO_BLOCK_ID mBlock_AMP             = AudioBlockPool::NO_ID;
        Connection*    mConnection_CH_IN_FREQ = nullptr;
        Connection*    mConnection_CH_IN_AMP  = nullptr;

        void process_sine(uint16_t i, float* pAudioBlock) {
            mPhase += mStepSize;
            if (mPhase > TWO_PI) {
                mPhase -= TWO_PI;
            }
            pAudioBlock[i] = klang_math_sin(mPhase);
        }

        void process_triangle(uint16_t i, float* pAudioBlock) {
            mPhase += mFrequency;
            mPhase                       = KlangMath::mod(mPhase, KLANG_AUDIO_RATE);
            const float mPhaseShifted    = mPhase - (KLANG_AUDIO_RATE / 2);
            const float mPhaseShiftedAbs = mPhaseShifted > 0 ? mPhaseShifted : -mPhaseShifted;
            pAudioBlock[i]               = (mPhaseShiftedAbs - (KLANG_AUDIO_RATE / 4)) / (KLANG_AUDIO_RATE / 4);
        }

        void process_sawtooth(uint16_t i, float* pAudioBlock) {
            mPhase += mFrequency;
            mPhase         = KlangMath::mod(mPhase, KLANG_AUDIO_RATE);
            pAudioBlock[i] = (mPhase / (KLANG_AUDIO_RATE / 2)) + SIGNAL_MIN;
        }

        void process_square(uint16_t i, float* pAudioBlock) {
            mPhase += mFrequency;
            mPhase         = KlangMath::mod(mPhase, KLANG_AUDIO_RATE);
            pAudioBlock[i] = mPhase > (KLANG_AUDIO_RATE / 2) ? SIGNAL_MAX : SIGNAL_MIN;
        }
    };
}  // namespace klang

#endif /* NodeVCOFunction_hpp */