/*
 * Klang – a node+text-based synthesizer library
 *
 * This file is part of the *wellen* library (https://github.com/dennisppaul/wellen).
 * Copyright (c) 2022 Dennis P Paul.
 *
 * This library is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, version 3.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

/**
 *       [ NODE_MIXER4_STEREO  ]
 *       +---------------------+
 *       |                     |
 * IN00--| SIGNAL_0   SIGNAL_R |--OUT00
 * IN01--| SIGNAL_1   SIGNAL_L |--OUT01
 * IN02--| SIGNAL_2            |
 * IN03--| SIGNAL_3            |
 *       |                     |
 *       +---------------------+
 */

// @TODO(implement `PAN`, `MIX` as INPUTs)

#ifndef NodeMixer4Stereo_hpp
#define NodeMixer4Stereo_hpp

#if KLST_BOARD_TYPE == KLST_TINY
// #define KLST_USE_DSP
#endif

#ifdef KLST_USE_DSP
// see https://arm-software.github.io/CMSIS_5/DSP/html/index.html
#include <CMSIS_DSP.h>
#endif

#include "KlangNode.hpp"

namespace klang {
    class NodeMixer4Stereo : public Node {
    public:
        static const CHANNEL_ID CH_IN_SIGNAL_0      = 0;
        static const CHANNEL_ID CH_IN_SIGNAL_1      = 1;
        static const CHANNEL_ID CH_IN_SIGNAL_2      = 2;
        static const CHANNEL_ID CH_IN_SIGNAL_3      = 3;
        static const CHANNEL_ID NUM_CH_IN           = 4;
        static const CHANNEL_ID CH_OUT_SIGNAL_LEFT  = 0;
        static const CHANNEL_ID CH_OUT_SIGNAL_RIGHT = 1;
        static const CHANNEL_ID NUM_CH_OUT          = 2;

        enum SIGNAL_CHANNEL { SIGNAL_0 = 0,
                              SIGNAL_1,
                              SIGNAL_2,
                              SIGNAL_3 };

        bool connect(Connection* pConnection, CHANNEL_ID pInChannel) {
            if (pInChannel == CH_IN_SIGNAL_0) {
                mConnection_CH_IN_SIGNAL_0 = pConnection;
                return true;
            }
            if (pInChannel == CH_IN_SIGNAL_1) {
                mConnection_CH_IN_SIGNAL_1 = pConnection;
                return true;
            }
            if (pInChannel == CH_IN_SIGNAL_2) {
                mConnection_CH_IN_SIGNAL_2 = pConnection;
                return true;
            }
            if (pInChannel == CH_IN_SIGNAL_3) {
                mConnection_CH_IN_SIGNAL_3 = pConnection;
                return true;
            }
            return false;
        }

        bool disconnect(CHANNEL_ID pInChannel) {
            if (pInChannel == CH_IN_SIGNAL_0) {
                mConnection_CH_IN_SIGNAL_0 = nullptr;
                return true;
            }
            if (pInChannel == CH_IN_SIGNAL_1) {
                mConnection_CH_IN_SIGNAL_1 = nullptr;
                return true;
            }
            return false;
            if (pInChannel == CH_IN_SIGNAL_2) {
                mConnection_CH_IN_SIGNAL_2 = nullptr;
                return true;
            }
            if (pInChannel == CH_IN_SIGNAL_3) {
                mConnection_CH_IN_SIGNAL_3 = nullptr;
                return true;
            }
            return false;
        }

        void update(CHANNEL_ID pChannel, float* pAudioBlock) {
            const bool    b0                  = (mConnection_CH_IN_SIGNAL_0 != nullptr);
            const bool    b1                  = (mConnection_CH_IN_SIGNAL_1 != nullptr);
            const bool    b2                  = (mConnection_CH_IN_SIGNAL_2 != nullptr);
            const bool    b3                  = (mConnection_CH_IN_SIGNAL_3 != nullptr);
            const uint8_t mSignalInputCounter = b0 + b1 + b2 + b3;
            if (is_not_updated() && pChannel == CH_OUT_SIGNAL && mSignalInputCounter > 0) {
                AUDIO_BLOCK_ID mBlock_SIGNAL_0     = AudioBlockPool::NO_ID;
                AUDIO_BLOCK_ID mBlock_SIGNAL_1     = AudioBlockPool::NO_ID;
                AUDIO_BLOCK_ID mBlock_SIGNAL_2     = AudioBlockPool::NO_ID;
                AUDIO_BLOCK_ID mBlock_SIGNAL_3     = AudioBlockPool::NO_ID;
                float*   mBlockData_SIGNAL_0 = nullptr;
                float*   mBlockData_SIGNAL_1 = nullptr;
                float*   mBlockData_SIGNAL_2 = nullptr;
                float*   mBlockData_SIGNAL_3 = nullptr;

                if (b0) {
                    mBlock_SIGNAL_0     = AudioBlockPool::instance().request();
                    mBlockData_SIGNAL_0 = AudioBlockPool::instance().data(mBlock_SIGNAL_0);
                    mConnection_CH_IN_SIGNAL_0->update(mBlock_SIGNAL_0);
                }
                if (b1) {
                    mBlock_SIGNAL_1     = AudioBlockPool::instance().request();
                    mBlockData_SIGNAL_1 = AudioBlockPool::instance().data(mBlock_SIGNAL_1);
                    mConnection_CH_IN_SIGNAL_1->update(mBlock_SIGNAL_1);
                }
                if (b2) {
                    mBlock_SIGNAL_2     = AudioBlockPool::instance().request();
                    mBlockData_SIGNAL_2 = AudioBlockPool::instance().data(mBlock_SIGNAL_2);
                    mConnection_CH_IN_SIGNAL_2->update(mBlock_SIGNAL_2);
                }
                if (b3) {
                    mBlock_SIGNAL_3     = AudioBlockPool::instance().request();
                    mBlockData_SIGNAL_3 = AudioBlockPool::instance().data(mBlock_SIGNAL_3);
                    mConnection_CH_IN_SIGNAL_3->update(mBlock_SIGNAL_3);
                }

                mBlock_CH_OUT_SIGNAL_LEFT                   = AudioBlockPool::instance().request();
                mBlock_CH_OUT_SIGNAL_RIGHT                  = AudioBlockPool::instance().request();
                float* mBlockData_CH_OUT_SIGNAL_LEFT  = AudioBlockPool::instance().data(mBlock_CH_OUT_SIGNAL_LEFT);
                float* mBlockData_CH_OUT_SIGNAL_RIGHT = AudioBlockPool::instance().data(mBlock_CH_OUT_SIGNAL_RIGHT);

                const float mPan0 = mPan[SIGNAL_CHANNEL::SIGNAL_0] * 0.5 + 0.5;
                const float mPan1 = mPan[SIGNAL_CHANNEL::SIGNAL_1] * 0.5 + 0.5;
                const float mPan2 = mPan[SIGNAL_CHANNEL::SIGNAL_2] * 0.5 + 0.5;
                const float mPan3 = mPan[SIGNAL_CHANNEL::SIGNAL_3] * 0.5 + 0.5;
                const float pR0   = mPan0;
                const float pL0   = 1.0 - mPan0;
                const float pR1   = mPan1;
                const float pL1   = 1.0 - mPan1;
                const float pR2   = mPan2;
                const float pL2   = 1.0 - mPan2;
                const float pR3   = mPan3;
                const float pL3   = 1.0 - mPan3;

                for (uint16_t i = 0; i < KLANG_SAMPLES_PER_AUDIO_BLOCK; ++i) {
                    float sL = 0.0;
                    float sR = 0.0;
                    if (b0) {
                        const float s0 = mBlockData_SIGNAL_0[i] * mMix[SIGNAL_CHANNEL::SIGNAL_0];
                        sL += s0 * pL0;
                        sR += s0 * pR0;
                    }
                    if (b1) {
                        const float s1 = mBlockData_SIGNAL_1[i] * mMix[SIGNAL_CHANNEL::SIGNAL_1];
                        sL += s1 * pL1;
                        sR += s1 * pR1;
                    }
                    if (b2) {
                        const float s2 = mBlockData_SIGNAL_2[i] * mMix[SIGNAL_CHANNEL::SIGNAL_2];
                        sL += s2 * pL2;
                        sR += s2 * pR2;
                    }
                    if (b3) {
                        const float s3 = mBlockData_SIGNAL_3[i] * mMix[SIGNAL_CHANNEL::SIGNAL_3];
                        sL += s3 * pL3;
                        sR += s3 * pR3;
                    }
                    mBlockData_CH_OUT_SIGNAL_LEFT[i]  = sL;
                    mBlockData_CH_OUT_SIGNAL_RIGHT[i] = sR;

// #ifndef KLST_USE_DSP
//                     mBlockData_CH_OUT_SIGNAL_LEFT[i] *= mRatio;
//                     mBlockData_CH_OUT_SIGNAL_RIGHT[i] *= mRatio;
// #endif
                }

// #ifdef KLST_USE_DSP
//                 //                 arm_offset_f32	(mBlockData_CH_OUT_SIGNAL_LEFT, [[add value]], mBlockData_CH_OUT_SIGNAL_LEFT, KLANG_SAMPLES_PER_AUDIO_BLOCK);
//                 arm_scale_f32(mBlockData_CH_OUT_SIGNAL_LEFT, mRatio, mBlockData_CH_OUT_SIGNAL_LEFT, KLANG_SAMPLES_PER_AUDIO_BLOCK);
//                 arm_scale_f32(mBlockData_CH_OUT_SIGNAL_RIGHT, mRatio, mBlockData_CH_OUT_SIGNAL_RIGHT, KLANG_SAMPLES_PER_AUDIO_BLOCK);
// #endif
                AudioBlockPool::instance().release(mBlock_SIGNAL_0);
                AudioBlockPool::instance().release(mBlock_SIGNAL_1);
                AudioBlockPool::instance().release(mBlock_SIGNAL_2);
                AudioBlockPool::instance().release(mBlock_SIGNAL_3);

                flag_updated();
            }
            if (pChannel == CH_OUT_SIGNAL_LEFT) {
                if (mBlock_CH_OUT_SIGNAL_LEFT != AudioBlockPool::NO_ID) {
                    float* mBlockData_CH_OUT_SIGNAL_LEFT = AudioBlockPool::instance().data(mBlock_CH_OUT_SIGNAL_LEFT);
#ifdef KLST_USE_DSP
                    arm_copy_f32(mBlockData_CH_OUT_SIGNAL_LEFT, pAudioBlock, KLANG_SAMPLES_PER_AUDIO_BLOCK);
#else
                    memcpy(pAudioBlock,
                           mBlockData_CH_OUT_SIGNAL_LEFT,
                           sizeof(float) * KLANG_SAMPLES_PER_AUDIO_BLOCK);
#endif
                }
            } else if (pChannel == CH_OUT_SIGNAL_RIGHT) {
                if (mBlock_CH_OUT_SIGNAL_RIGHT != AudioBlockPool::NO_ID) {
                    float* mBlockData_CH_OUT_SIGNAL_RIGHT = AudioBlockPool::instance().data(mBlock_CH_OUT_SIGNAL_RIGHT);
#ifdef KLST_USE_DSP
                    arm_copy_f32(mBlockData_CH_OUT_SIGNAL_LEFT, pAudioBlock, KLANG_SAMPLES_PER_AUDIO_BLOCK);
#else
                    memcpy(pAudioBlock,
                           mBlockData_CH_OUT_SIGNAL_RIGHT,
                           sizeof(float) * KLANG_SAMPLES_PER_AUDIO_BLOCK);
#endif
                }
            }
        }

        void set_mix(SIGNAL_CHANNEL pChannel, float pValue) {
            mMix[pChannel] = pValue;
        }

        float get_mix(uint8_t pChannel) {
            return mMix[pChannel];
        }

        void set_pan(SIGNAL_CHANNEL pChannel, float pValue) {
            mPan[pChannel] = pValue;
        }

        float get_pan(uint8_t pChannel) {
            return mPan[pChannel];
        }

        void set_command(KLANG_CMD_TYPE pCommand, KLANG_CMD_TYPE* pPayLoad) {
            switch (pCommand) {
                case KLANG_SET_MIX_F32:
                    set_mix(static_cast<SIGNAL_CHANNEL>(pPayLoad[0]), KlangMath::FLOAT_32(pPayLoad, 1));
                    break;
                case KLANG_SET_PAN_I8_F32:
                    set_pan(static_cast<SIGNAL_CHANNEL>(pPayLoad[0]), KlangMath::FLOAT_32(pPayLoad, 1));
                    break;
            }
        }

    private:
        AUDIO_BLOCK_ID mBlock_CH_OUT_SIGNAL_LEFT  = AudioBlockPool::NO_ID;
        AUDIO_BLOCK_ID mBlock_CH_OUT_SIGNAL_RIGHT = AudioBlockPool::NO_ID;

        Connection*          mConnection_CH_IN_SIGNAL_0      = nullptr;
        Connection*          mConnection_CH_IN_SIGNAL_1      = nullptr;
        Connection*          mConnection_CH_IN_SIGNAL_2      = nullptr;
        Connection*          mConnection_CH_IN_SIGNAL_3      = nullptr;
        static const uint8_t NUM_SIGNAL_INPUT_CHANNELS       = 4;
        float          mMix[NUM_SIGNAL_INPUT_CHANNELS] = {1.0, 1.0, 1.0, 1.0};
        float          mPan[NUM_SIGNAL_INPUT_CHANNELS] = {0.0, 0.0, 0.0, 0.0};
    };
}  // namespace klang

#endif /* NodeMixer4Stereo_hpp */